Systems Biology II: Neural Systems (580.422)

Lecture 7, Synaptic Transmission

Eric Young 5-3164 eyoung@jhu.edu

Reading (one of the following):

D. Johnston and S.M. Wu *Foundations of Cellular Neurophysiology* (MIT Press, 1995). Chapters 12, 13.

I.M. Levitan & L.K. Kaczmarek *The Neuron* (Oxford Univ. Press). Chapters 8-13, especially 9, 11, and 12.

J.G. Nicholls et al. *From Neuron to Brain* (Sinauer Press). Chapters 9-14, especially 9-11.

Synaptic conductances G_{Ex} and G_{In} can be simulated by kinetic models like the one below.

$$T + R \underbrace{\stackrel{k_1}{\longleftarrow} TR \stackrel{k_2}{\longleftarrow} TR * \underbrace{\stackrel{k_3}{\longleftarrow} D}_{K_{-3}} D$$

$$G = (const) TR * \underbrace{\stackrel{k_3}{\longleftarrow} D}_{conductance}$$

T is the transmitter, *R* is the receptor, *TR* is the bound receptor, *TR** is the receptor in the open-channel state, and *D* is a desensitized state from which the channel exits slowly. This is a simplification; usually more than one *T* must bind and there are additional *TR* and *D* states.

Activation of the receptor is modeled by letting T be a short pulse and beginning the simulation with all the receptor in the R state.

The solutions for $TR^*(t)$ or Gt) are similar to the functions below. In fact, these are approximations, called α functions, with duration parameter τ .

As with ion channels, the effect, excitatory or inhibitory, of a particular synaptic channel is determined by the ions that pass through the channel. For ionotropic channels in the brain, the following transmitters and ion channels are seen:

ransmitter	Receptor	Ions	Effect	
Glutamate	AMPA, kainate	Na, K, (some Ca)	Excitatory	
	NMDA	Na, K, Ca	Excitatory	The main synaptic
GABA	А	Cl	Inhibitory	systems in the brain
Glycine		Cl	Inhibitory	
Acetylcholine	Nicotinic	Na, K, Ca	Excitatory	
Serotonin (5-HT)	5-HT ₃	Na, K	Excitatory	
ATP	Purine P1	Na, K	Excitatory	

The best understood metabotropic effects occur through activation of G-proteins. The general scheme of G-protein activation is shown below. When the receptor (*R*) binds a transmitter (*NT*), the G-protein complex exchanges its GDP moiety for a GTP and cleaves into an α -subunit-GTP part and a β - γ subunit part. These diffuse in the membrane and both can activate other proteins, either enzymes (*E*) or ion channels (*C*). The G-protein is inactivated when the α -subunit cleaves its GTP to GDP + P_i and the subunits recombine.

Response	Neurotransmitter	Receptor	
$ \uparrow I_{\text{Na}}, \uparrow I_{\text{K}} \uparrow I_{\text{Na}}, \uparrow I_{\text{K}}, \uparrow I_{\text{Ca}} $	Glutamate Glutamate Acetylcholine	Quisqualate/kainate N-Methyl-D-aspartate (NMDA) Nicotinic	Ionotropic
∱ <i>I</i> _{Cl}	γ-Aminobutryic acid Glycine	GABA _A	
$\uparrow I_{\mathrm{K,IR}}$	Acetylcholine Norepinephrine Serotonin (5-hydroxytryptamine [5-HT]) GABA	M ₂ α ₂ 5-HT ₁ GABA ₂	
	Dopamine Adenosine Somatostatin	D ₂ A ₁ SST ₅	
↓ I _{AHP}	Enkepnalins Acetylcholine Norepinephrine Serotonin Histamine	μ, δ Muscarinic β_1 5-HT ₇ H-	Metabotrop
The	Glutamate	Glutamate metabotropic	
↓ 1K,leak	Norepinephrine Serotonin Glutamate	α_1 5-HT ₂ Glutamate metabotropic	
↓ I _{Ca}	Multiple transmitters		

Summary of neurotransmitters and synaptic actions:

Synaptic actions in the brain can be roughly grouped into three categories, based on the nature of the postsynaptic pathway evoked:

- <u>Direct ionotropic mechanisms</u>. The receptor is coupled directly to the ion channel. The effects are immediate (latency <1 ms) and relatively short-lasting (<10 ms). The most common transmitters are glutamate (excitatory), GABA (inhibitory), and glycine (inhibitory). Most signal processing in the brain involves ionotropic mechanisms.
- 2. <u>Short-pathway metabotropic mechanisms</u>. The receptor is coupled to a second messenger, such as a G-protein, which has a direct effect on an effector, such as opening an ion channel or releasing vesicles at a synapse.
- 3. Long-pathway metabotropic mechanisms. The receptor is coupled to a second messenger cascade which leads to several effects or to a complex and long-lasting change in the cell's properties. For example, long-term plasticity (LTP) at synapses occurs with calcium acting as a messenger that initiates a cascade ultimately resulting in the production of new ionotropic glutamate receptors in the post-synaptic membrane, increasing the strength of the synapse.