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STIFFNESS OF THE HUMAN ARM 
 
This web resource combines the passive properties of muscles with the neural feedback system of 
the short-loop (spinal) and long-loop (transcortical) reflexes and examine how the whole limb 
responds to a perturbation.  One of us (RS), along with Ferdinando Mussa-Ivaldi and Emilio 
Bizzi performed an experiment where volunteers were asked to hold the handle of a robotic arm 
(Shadmehr and Mussa-Ivaldi, 1993).  A sketch of the experimental setup is shown in Figure 1A.  
The measurements were taken at two different arm configurations, labeled “left” and “right” in 
this figure.  For example, the hand was at the position labeled “right” in this figure and the robot 
displaced the hand from this position.  The volunteers were instructed to close their eyes and “try 
not to intervene voluntarily” as the robot displaced their hand from this position. 
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Figure 1.  Measurement of arm stiffness at two different limb configurations.  A.  
Volunteers were asked to hold the handle of a robotic arm.  Measurements were made at 
two different configuration of the arm: left and right positions.  B.  An example of force 
measured at the hand during displacement.  C.  Forces measured at the hand as a 
function of hand displacement.  In the left subfigure, the arm is in the “left” position, 
while in the right subfigure the arm is in the “right” position.  (From Shadmehr et al. 
1993 (1993)). 

The robot’s handle housed a force transducer and it recorded the forces that the muscles produced 
as the hand was displaced from its equilibrium position.  An example of one such displacement is 
shown in Figure 1B.  Note that the displacement of the hand is a two-dimensional vector that has 
an x and a y component, and similarly the force measured at the hand has components fx and fy.  
As the hand is pulled farther from its equilibrium positions, the muscles produce a larger force, 
and the force measured at the hand increases.  Eventually, the robot’s motors stop pulling at the 
hand and the arm snaps back to a position near the origin. 
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 The forces that were measured as the hand was pulled at different directions are plotted in 
Figure 1C.  The two subplots represent these forces when the arm was in the left and right 
configurations.  We can immediately see that the pattern of forces changed significantly.  When 
the arm is in the left configuration, pulling the hand along 135o produces significant restoring 
forces.  In contrast, when the arm is in the right configuration, the most significant restoring 
forces occur when the hand is pulled toward 45o.  Furthermore, note that the force vectors are 
often not pointing exactly toward the center (the origin).  For example, with the hand in the left 
configuration, when the hand is pulled toward 270o (straight down), the restoring forces push 
upward but also to the left.   

The force pattern in Figure 1C allows us to visualize how passive properties of arm 
muscles combine with reflexes to produce an equilibrium position for the hand.  Not all forces 
point to the center and some forces grow faster with displacement than others.  Nevertheless, 
hand’s equilibrium position lies at the bottom of the “bowl” defined by these forces.  The bowl is 
not round however, as its walls grow more steeply along certain directions.  It is as if a spring is 
attached to the bottom of the bowl and its strength is different depending on which direction we 
pull it.  Furthermore, the shape of the bowl seems to change as we move our arm from one 
configuration to another. 
 Muscles are producing these restoring forces.  The relationship between the restoring 
forces and the hand’s displacement is somehow reflecting the stiffness of all the muscles that are 
being stretched in the arm.  Whereas previously we were concerned with stiffness of a limb about 
a single joint, here we are concerned with the stiffness of the limb at the hand.  How are these 
different kinds of stiffness related?   
To answer this question, Ferdinando Mussa-Ivaldi, Neville Hogan, and Emilio Bizzi suggested 
that the restoring forces that were measured at the hand could be linearly approximated as a 
function of hand displacement (Mussa-Ivaldi et al., 1985).  If we represent force at the hand and 
position of the hand as vectors: 
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then stiffness, as measured at the hand, is the change in force with respect to change in position: 

11 12

21 22

x x

x
y y

df df
dx dy k kdK
df df k kd
dx dy

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥≡ = = ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

f
x

 

(1) 
 We put the subscript x under K here to remind ourselves that we are measuring stiffness 
in cartesian coordinates of the hand.  Because force and displacement are two-dimensional 
vectors, stiffness will be a 2 x 2 matrix.  That is, we will have to know how fx changes with 
respect to displacements along x and y, and also know how fy changes with respect to 
displacements along x and y. Our task is to estimate what the components of this stiffness matrix 
are. 
 To estimate stiffness, Mussa-Ivaldi and colleagues noted how much force they measured 
at the hand as they displaced it by a certain amount.  They took n data points and their data set 
looked something like this: 
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Because displacements were from an arbitrary point where force at the hand was zero, let us drop 
the “d” and refer to the measurements as x and f.  Our objective is to find a single matrix Kx such 
that over all the data points, the sum of the squared error between the estimated force and the 
actually measured force would be a minimum.  To do this, we begin with a guess for Kx (some 
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small random numbers will do).  For our first data point, we multiply x1 by Kx and estimate the 
force: 

1 1
ˆ  xK=f x  

As Kx was merely a guess, we are bound to have an error in our estimate: 
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We want to minimize the “square” of this error, but as this is a vector, we “square” it by 
multiplying it by its own transpose: 
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(2) 
We want to know how we should change our guess about the stiffness matrix so that this error is 
as small as possible.  What we have done is to find a function in Eq. (2) that relates estimation 
error to our stiffness parameters.  In a procedure called gradient descent, one takes the derivative 
of this error with respect to parameters of interest, that is, we find 11de dK , 12de dK , etc.  If we 
change our parameters in a direction opposite to the one specified by the derivatives, error will be 
reduced.  Therefore, we change our guess for each component of Kx by the following rule: 
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(3) 
where η is a small constant.  We now repeat this for the second data point, etc.  By the time that 
Mussa-Ivaldi et al. got to the end of their n data points, and cycled through them a few times, they 
saw that Kx converged.  Furthermore, it did a fair job of predicting the force that was recorded for 
any given displacement.  To represent their result, they took the Kx that they had estimated for 
displacements of the hand and multiplied it by dx, where dx was a vector that had a unit length 
and a direction that changed gradually from 0o to 360o.  When the “circle” described by 
displacements dx was multiplied by the stiffness matrix Kx, it produced an ellipse.  These ellipses 
are drawn for various configurations of the arm in Figure 2.   
Compare the stiffness ellipses at the “left” and “right” configurations of the arm in this figure 
with the pattern of force in Figure 1.  The long axis of each ellipse tells us the direction of hand 
displacement for which the restoring forces were maximum.  The short axis of each ellipse tells 
us the direction of hand displacement for which the restoring forces were minimum.  The arm is 
most stiff along a line that connects the hand to the shoulder joint.  As the shoulder joint rotates, 
so does the direction of maximum stiffness. 
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Figure 2.  Representation of stiffness as measured at the hand as a function of arm 
configuration.  The 2x2 matrix that represents stiffness of the arm as measured at the 
hand, is plotted as an ellipse at each arm configuration.  The major axis of each ellipse 
specifies the direction of hand displacement for which the limb is most stiff (at that 
position).  The minor axis specifies the direction of displacement for which the limb is 
least stiff.  (From Mussa-Ivaldi et al. 1985). 

 Mussa-Ivaldi and colleagues observed that this basic pattern of stiffness was essentially 
the same across different volunteers (Mussa-Ivaldi et al., 1985).  They wondered what it signified 
regarding stiffness of muscles and joints of the limb.  To infer this, they transformed stiffness as 
measured in terms of displacements of the hand, called end-point stiffness, to a stiffness in terms 
of displacements in the joint angles, called joint stiffness.  To do this, we need to transform forces 
f that are measured in terms of a cartesian coordinate system that represents hand position to 
torques τ.  The torques are measured in terms of an angular coordinate system that specifies 
position of the joints, q.  The Jacobian that describes the relationship between these two 
coordinate systems is defined as: 
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To compute the Jacobian, we write position of the endpoint (i.e., position of the hand) in terms of 
the joint angles: 
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where l1 and l2 are the lengths of the upper and forearms, respectively.  We next find the 
derivative of endpoint position with respect to the joint angle: 
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Stiffness as measured in cartesian or joint coordinates is defined as: 
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Using the principle of virtual work, we can relate force to torque using the Jacobian: 
( )TJ=τ q f  

As joint stiffness is the derivative of the above function with respect to joint angular 
displacement, we have: 
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For small displacements of the limb, we can assume that the first term in the above sum is 
negligible, and so we have: 

( )T
j

dK J
d

≈
fq
q

 

Expanding d df q  in terms of d df x  gives us an expression of joint stiffness in terms of end-
point stiffness: 
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(4) 
 We now use this relationship to estimate joint stiffness for each configuration of the limb 
from the measured stiffness at the hand.  The results are shown in Figure 3.  In this figure, the 
joint stiffness matrix is used to transform a joint displacement that varies as a circle into an 
ellipse.  There is a consistent shape to the ellipse and it does not vary very much as a function of 
configuration of the arm.  Note how the major axis of the ellipse is approximately at 45o.  This 
means that the muscles produce a maximum restoring torque when both the elbow and shoulder 
joints are displaced in the same direction.  That is, when both joints are either flexed or extended 
simultaneously, muscles produce a maximum restoring torque.  When one joint is flexed but the 
other is extended, the restoring torque is minimum.   
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Figure 3.  Joint stiffness as estimated from hand stiffness at various configurations of 
the arm.  (From Shadmehr (1993) ). 

 This pattern makes sense if you consider that we have both single joint and two-joint 
muscles in our arm.  When both the elbow and shoulder joints are flexed, the stiffness of the 
single joint and double joints that extend these joints add to produce restoring torques on the 
joints.  When one joint is flexed but the other is extended, the two-joint muscles may not change 
length, and therefore do not contribute to the restoring torques.  As a result, the limb is least stiff 
for these displacements.  The seemingly complex changes that we saw in endpoint stiffness were 
really the result of something rather simple at the level of the muscles. 
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